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This paper investigates the age, P–T conditions and kinematics of Karakorum Fault (KF) zone rocks in the
NW part of the Himalaya–Karakorum belt. Granulite to greenschist facies assemblages were developed
within the KF zone during strike-slip shearing. The granulites were formed at high temperature
(800 �C, 5.5 kbar), were subsequently retromorphosed into the amphibolite facies (700–750 �C, 4–5 kbar)
and the greenschist facies (350–400 �C, 3–4 kbar). The Tangtse granite emplaced syn-kinematically at the
contact between a LT and the HT granulite facies. Intrusion occurred during the juxtaposition of the two
units under amphibolite conditions. Microstructures observed within the Tangtse granite exhibit a syn-
magmatic dextral S–C fabric. Compiled U–Pb and Ar–Ar data show that in the central KF segment, gran-
ulite facies metamorphism occurred at a minimum age of 32 Ma, subsequent amphibolite facies meta-
morphism at 20–18 Ma. Further shearing under amphibolite facies (650–500 �C) was recorded at
13.6 ± 0.9 Ma, and greenschist-facies mica growth at 11 Ma. These data give further constrains to the
age of initiation and depth of the Karakorum Fault. The granulite-facies conditions suggest that the KF,
accommodating the lateral extrusion of Tibet, could be at least a crustal or even a Lithosphere-scale shear
zone comparable to other peri-Himalayan faults.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

North of the Himalayan belt, in response to the India–Asia col-
lision, the eastward extrusion of the Tibetan bloc is accommo-
dated by major strike-slip faults (Red River Fault, Altyn Tagh
Fault, Karakorum Fault (KF); Tapponnier and Molnar, 1977; Tap-
ponnier et al., 1986; Peltzer and Tapponnier, 1988; Armijo
et al., 1989). Some of these strike-slip faults have recently been
shown to be deeply rooted. Actually, seismic tomography across
the Altyn Tagh Fault has evidenced a negative P-wave anomaly
below the fault down to 140 km depth, interpreted as lithospheric
scale shearing (Wittlinger et al., 1998). Along the Red River Fault,
syn-shearing formation and exhumation of HT rocks is indicative
of at least a crustal-scale structure (Harrison et al., 1992; Lacassin
et al., 1997; Leloup et al., 1995). The trans-crustal to trans-litho-
spheric character of these faults may allow thermal advection by
magma guided along the fault (‘‘leaky” transcurrent fault), but
shear heating may also be invoked (Leloup et al., 1999). However,
ll rights reserved.

+33 4 92076816.

, Y. et al., Syn-kinematic em
Journal of Asian Earth Scien
the scale of the Karakorum Fault, SE boundary of Tibet, is un-
known, and the importance of lateral extrusion of Tibet along this
fault is much discussed. The published estimates of right-lateral
motion range from 66 to 1000 km (Peltzer and Tapponnier,
1988; Liu et al., 1992; Liu, 1993; Searle, 1996; Searle et al.,
1999; Murphy et al., 2000). More recently, several studies fo-
cussed on the central part of the KF have proposed right-lateral
displacements of 280–300 km based on the offset of suture zones
(Rolland and Pêcher, 2001; Lacassin et al. (2004a,b)). These esti-
mates are opposed to smaller estimates of 120 km based on the
correlation of the Baltoro Batholith in Karakorum and the Tangtse
granite in the Pangong Range (Searle, 1996; Searle et al., 1999;
Searle and Phillips, 2004; Phillips et al., 2004). However, some
authors consider that the Tangtse granite is not offset by but is
rather emplaced within the KF (Lacassin et al., 2004). In this pa-
per, we present additional structural, metamorphic, geochrono-
logical and geochemical data on the Tangtse granite as well as
on adjacent HT metamorphic rocks within the Pangong Range.
The following questions are addressed by this paper: (1) is the
Tangtse granite offset by or emplaced within the KF?; (2) What
is the significance of the HT metamorphism?
placement of the Pangong metamorphic and magmatic complex
ces (2008), doi:10.1016/j.jseaes.2008.03.009
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2. Analytical methods and procedures

Nine igneous rocks were analysed for major elements (Table 1)
using X-Ray fluorescence (XRF) at the University C. Bernard of
Lyon. Loss on ignition (LOI) was determined by heating the sample
at 1000 �C for 30 min.

Mineral analyses, presented in Table 2, were obtained on a
Cameca SX-100 microprobe at the University Blaise Pascal of Cler-
mont–Ferrand. Counting time was 10 s. per element; the accelerat-
ing potential was 20 kV for a sample current of 20 nA. Natural
silicates were used as standards.

To determine pressure and temperature (P–T) conditions, we
have used two complementary approaches in addition to ana-
lyse equilibrated mineral parageneses. Metapelites can be de-
scribed in the KFMASH system (Spear, 1993). Metamorphic
equilibrium and metamorphic reactions, deduced from textural
relationships between the different mineral species, in thin sec-
tions, have been first projected on the KFMASH petrogenetic
grids defined by Spear and Cheney (1989), completed by Vie-
lzeuf and Holloway (1988) and Le Breton and Thompson
(1988). Complementary P–T estimates have been obtained using
cationic exchanges reactions between garnet and other miner-
als. Uncertainties for the garnet biotite thermometry correspond
to the standard deviation (at the 2r-level) calculated for each
selected calibration on each sample. Uncertainties in pressure,
also corresponding to the standard deviation (at the 2r-level),
were calculated for each selected calibration with the previously
calculated average temperature interval for the same biotite–
garnet pair.

Metabasites have a calc-akaline compositions, ranging from
basalts to andesites (see Section 4). They can thus be described
in the CaFMASH system. As the grossular content of garnet is very
high, pressures calculated using cationic exchange reactions be-
tween garnet and other minerals by may be overestimated. We
therefore used the Thermocalc software of Powell and Holland
(1988) and Holland and Powell (1990) in complement to projec-
tions on the CaFMASH grid and cationic exchange reactions for
temperature estimates. Uncertainties, drawn as ellipses on the P–
T diagram, are given at the 2r-level. These uncertainties are due
to (i) the variability of microprobe data, and (ii), the confidence
interval of thermodynamic data variability for a given chemical
composition.

Two samples were selected for amphibole Ar–Ar dating. They
were irradiated at the TRIGA reactor in Pavia, and analysed at the
isotope geology laboratory of Bern University. The sample was
heated in a double vacuum resistance furnace. Ar was analysed
in a MAP 215-50B rare gas spectrometer. The Ar–Ar results are pre-
Table 1
XRF geochemical data of Pangong Range metamorphic rocks, locations shown on Fig. 1

No. Sample (in wt%) LK96/1C LK96/6A LK96/6B LK96/6C LK96/6

SiO2 70.36 63.21 71.57 64.24 61.66
TiO2 0.57 0.43 0.60 0.67 0.69
Al2O3 11.94 14.04 12.15 15.48 14.94
Fe2O3t 4.69 4.95 3.96 5.85 6.96
MnO 0.11 0.16 0.07 0.08 0.11
MgO 1.82 2.10 1.73 2.58 2.86
CaO 6.57 10.38 4.85 5.84 8.41
Na2O 1.58 1.88 2.90 2.56 1.43
K2O 1.56 0.48 0.73 1.81 1.81
P2O5 0.13 0.10 0.16 0.15 0.17
LOI 0.59 1.47 0.43 0.58 0.85
H2O� 0.08 0.01 0.04 0.08 0.03
Total 100.00 99.21 99.19 99.92 99.92

Please cite this article in press as: Rolland, Y. et al., Syn-kinematic em
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sented in Table 3, for more details about analytical procedures see
(Villa et al., 2000).

3. Geological setting and structural observations

The Pangong Range is a 100 km long–5 to 10 km wide massif lo-
cated between two branches of the Karakorum fault (Fig. 1). It is
constituted by two tectonic units: a central granulite facies core
and an amphibolitic cortex (Rolland and Pêcher, 2001; Rolland,
2002). The granulite facies core Pangong Range is mainly com-
prised by metabasites and limestones, while the amphibolite facies
rim is composed of metapelitic schits and gneisses and some
metabasic rocks found as decametre to hectometre-scale lenses.
The limit between the two zones is a sharp fault probably still ac-
tive. The Tangtse granite is emplaced as an ‘‘injection complex”
(Weinberg and Searle, 1998), a complex network of dikes, at the
boundary of the two zones. The Pangong Range is located in an
area where the Karakorum fault trend shifts from �155N� in the
Nubra area to �N140� along the Pangong Lake (Fig. 1). In the con-
text of the dextral strike-slip motion of the Karakorum fault the
Pangong Range is thus a transpressive zone (Weinberg et al.,
2000). However, existence of triangular facets and deformation of
glacial valleys are indicative of recent dextral plus normal motion
on the eastern boundary of the Pangong range.

Our study focuses on the central portion of the fault (Fig. 1),
where the fault fringes the Karakorum terrain to the NW, striking
along the Nubra Valley, and reactivates the Shyok Suture to the
SW, along the Shyok and Pangong valleys. The structural pattern
at a regional scale shows a partitioning between the fault zone
and the tectonic blocs on each side. Strike-slip strain is concen-
trated in a narrow zone (2–10 km), clearly evidenced by dextral
S–C bands (e.g., Matte et al., 1996), while outside of this zone,
NW–SE oriented structures are compatible with a context of
NE–SW shortening (Fig. 2). Along the Nubra valley, the structural
pattern (Fig. 2A) is featured by very steep foliation parallel with
the KF and plunging 70–80� east. Mineral lineation is plunging
preferentially to the SE (mean value, 140�SE25). Fold lineations
axes, which are equally parallel to the fault strike, plunge moder-
ately to the NW (mean of 20�). The association of C–S fabrics
(Berthé et al., 1979), parallel to the fault, with a SE dipping line-
ation show that the last deformational event corresponds to a
strong strike-slip component, and a slight uplift of the western
side of the fault.

In the granulite and amphibolite facies units of the Pangong
Range, the foliation planes are subvertical and also parallel with
the local trend of the Karakorum fault, i.e., N140� (Fig. 2B), but
the mineral lineation is rather plunging NW of about 20�. Associ-
D (duplicate) LK96/6D LK96/7A LK96/8A LK96/8B LK96/8C

62.64 55.59 52.26 67.91 48.29
0.70 0.86 1.07 0.53 1.27
14.56 16.08 13.53 16.48 14.94
6.68 10.06 8.66 2.26 9.78
0.11 0.20 0.15 0.03 0.21
3.05 5.17 9.24 0.55 7.58
8.47 8.45 9.12 2.15 10.60
1.30 2.55 2.63 3.51 2.87
1.86 0.08 1.76 5.31 1.20
0.16 0.09 0.30 0.17 0.28
0.63 0.51 1.21 0.43 0.86
0.14 0.17 0.00 0.03 1.64
100.30 99.81 99.93 99.36 99.52

placement of the Pangong metamorphic and magmatic complex
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Table 2
Electron microprobe chemical analyses of principal representative minerals

Minerals: cpx Parg. Ged. Ant. Scp. Biotite Plagioclase Rutile spin. Garnet Cord. And.

Assemblage
(in wt%)

1 1 2 2 1 1 3 4 1 3 4 2 2 1 2 3 4 5 5 5 5

SiO2 51.73 41.39 45.55 54.13 45.45 37.01 35.42 35.18 47.30 45.92 56.62 0.01 – 37.69 40.96 37.16 37.36 47.48 46.86 37.25 36.73
Al2O3 1.94 14.09 18.32 5.98 27.46 16.10 16.72 19.42 33.16 33.84 28.66 0.04 0.03 21.43 23.11 21.44 21.45 31.42 31.14 62.48 62.58
MgO 12.69 9.57 19.98 23.81 0.05 9.66 10.29 8.66 0.02 0.01 – – 4.22 2.87 13.38 1.93 3.25 7.17 7.21 0.04 0.05
FeO 6.61 15.21 11.06 11.97 0.11 19.40 19.94 19.23 0.10 0.12 0.087 0.10 38.99 19.00 19.52 20.37 30.88 9.28 9.48 0.32 0.38
Fe2O3 2.47 0.36 – – – – – – – – – – – 2.31 – 2.05 – – – – –
MnO 0.15 0.11 0.17 0.08 – 0.26 0.34 0.23 0.05 0.02 – – 0.22 1.31 0.44 5.96 5.16 0.66 0.67 – 0.01
Cr2O3 0.02 – – – – – – – 0.03 – – – – 0.11 – – – – – – –
TiO2 0.11 1.19 0.37 0.16 – 3.73 2.44 2.81 – – – 99.92 55.93 0.17 0.02 – 0.06 0.04 0.00 0.03 0.08
CaO 23.68 12.08 0.88 0.63 18.64 0.08 0.03 0.04 16.95 17.04 10.4 0.02 0.05 15.39 3.66 11.38 2.94 0.06 0.12 0.01 0.01
Na2O 0.47 1.15 1.24 0.28 2.95 0.12 0.14 0.23 1.96 1.95 5.947 – – – 0.03 – – 0.82 0.84 0.07 0.03
K2O 0.02 2.11 0.01 0.02 0.09 9.57 9.49 9.51 0.10 0.05 0.102 0.02 0.01 0.02 – – 0.01 – 0.04 0.02 0.02
Total 99.88 97.31 97.58 97.05 94.75 95.94 94.82 95.31 99.66 98.94 101.8 100.1 99.45 100.3 101.1 100.3 101.1 96.91 96.37 100.2 99.88

18 18 20 20
Si 1.97 6.26 6.33 7.52 6.71 5.61 5.47 5.36 2.19 2.14 2.51 1.65 Ti 5.94 6.02 5.94 5.94 5.02 4.99 4.02 3.98
Al 0.09 2.51 3.00 0.98 4.78 2.88 3.04 3.49 1.81 1.86 1.49 1.2 Fe 3.98 4.00 4.04 4.02 4.78 4.78 8.74 8.79
Ti 0.13 0.04 0.02 0.43 0.28 0.32 0.15 Mg 0.02 0.01 0.01
Fe2+ 0.21 1.92 1.29 1.39 0.01 2.46 2.57 2.45 2.50 2.40 2.72 4.11 1.00 1.03 0.03 0.04
Fe3+ 0.07 0.05 0.09 0.08 0.00
Mg 0.72 2.16 4.14 4.93 2.18 2.37 1.97 0.67 2.93 0.46 0.77 1.38 1.40 0.01 0.01
Ca 0.97 1.96 0.13 0.09 2.95 0.84 0.85 0.49 2.60 0.58 1.95 0.50
Mn 0.01 0.02 0.01 0.03 0.04 0.03 0.17 0.05 0.81 0.69 0.07 0.07
Cr
Na 0.03 0.34 0.33 0.08 0.85 0.04 0.04 0.07 0.18 0.18 0.51 0.20 0.21 0.02 0.01
K 0.41 0.02 1.85 1.87 1.85 0.01 0.01

jd = 5.68(Na+K)A = 0.7 0.3 0.02 XFe:0.53 0.52 0.55 % Alm = 41.45 40.23 45.84 67.62 XFe: 0.42 0.42 0.75 0.80
Wo = 47.44 (Na)A = 0.3 0.3 0.01 XMe = 77.5 % Ab = 0.17 0.17 0.51 % Gro = 43.01 9.67 32.81 8.25
En = 35.38 (Na)B = 0.0 0.04 0.06 Na/K = 0.98 % An = 0.82 0.83 0.49 % Py = 11.14 49.18 7.75 12.69
Fs = 11.50 XMg = 0.52 0.76 0.78 Na/Ca = 0.29 % Or = 0.006 0.006 % Spes = 2.88 0.92 13.59 11.44

cpx, clinopyroxene; parg, pargasite; ged, gedrite; ant, anthophyllite; scp, scapolite; spin, spinel; jd, jadeite; wo, wollastonite; en, enstatite; me, meionite; ab, albite; an, anorthite; or, orthose; alm, almandine; gro, grossular; py,
pyrope; spes, spessartine; Cord, cordierite; And, andalusite.
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ated S–C fabrics are indicative of dextral motion associated with
relative exhumation of the eastern side of the fault. The Tangtse
granite is a complex network of dikes, intrusive at the contact be-
tween the amphibolite and granulite units, and is affected by syn
to post-granite crystallisation C–S deformation (Fig. 3). In contrast
with the Nubra area, the similarly with the Pangong area, the min-
eral lineations dip towards the NW (dipping a mean of 30�NW). In
this area as in the Pangong Range, relative to the Nubra area, the
last deformational event corresponds to a slightly less strong
strike-slip component, with an exhumation of the eastern side of
the fault.

Within the northern Ladakh terrain margin, SW of Pangong and
Shyok valleys, the strike of thrusts and the presence of vertical
mineral lineation (Fig. 2C) is in agreement with a NNW–SSE short-
ening context.
4. Geochemical nature of Pangong Range metamorphic rocks

Amphibolite grade rocks have been sampled along the Pan-
gong Range (LK96 series, Table 1) for major element geochem-
ical analyses. The sample compositions are comprised between
52 and 63 wt% silica, with compositions similar to that of Shyok
Suture Zone volcanic rocks (Fig. 4A), with relatively high Al2O3

(11.9–16 wt%) and low TiO2 contents (0.4–1.3 wt%). Similarly to
Shyok Suture Zone volcanics (Petterson and Windley, 1991;
Treloar et al., 1996; Rolland et al., 2000, 2002a), a sub-linear
decrease of TiO2 contents with increasing SiO2 can be observed,
between 50 and 65 SiO2 wt% (Fig. 4B). These features (high
Al2O3 and low TiO2) are commonly found in Calk-alkaline volca-
nic arc settings (e.g., Juteau and Maury, 1997; for a discussion
of the arc affinity of Shyok samples see Rolland et al., 2000,
2002a).

5. Petrography and thermobarometry

5.1. Central granulitic core of the Pangong Massif

The central part of the Pangong Massif displays three types of
granulitic assemblages (Table 2): clinopyroxene–pargasite–scapo-
lite–spinel–quartz–plagioclase assemblage (Assemblage 1), ortho-
amphibole–garnet–spinel–rutile assemblage (Assemblage 2) and
garnet–biotite–plagioclase–quartz (Assemblage 3).

5.1.1. P–T conditions of granulite facies
The presence of scapolite (Meionite variety) imposes high tem-

peratures, above 800 �C (Goldsmith, 1976; Fig. 5 and Table 2). The
jadeitic content of clinopyroxene (7%), in the presence of plagio-
clase, yields a pressure of 5.5 kbar at 800 �C (Fig. 6; Holland,
1980). The presence of rutile, equilibrated with a pyrope-rich gar-
net (Xpy = 49.2, Table 2), implies minimal pressure of 5 kbar and
temperature of 800 �C (Bohlen et al., 1983). A complementary
P–T estimate, using the Thermocalc software on the assemblage
2, yields a similar result of T = 870 ± 70 �C and P = 7.1 ± 1.2 kbar
for the temperature peak.

5.1.2. P–T conditions of amphibolite facies
The granulites were retromorphosed under amphibolite facies

conditions by crystallisation of hornblende, garnet and biotite
(Fig. 5). The presence of orthoamphiboles suggests an early ret-
rogression due to shearing in granulite grade conditions (Das-
gupta et al., 1999). Clinopyroxene to hornblende transformation
indicates a thermal drop to 750–775 �C at a pressure of 4–8 kbar
(Spear, 1981). The garnet–hornblende thermometer of Graham
and Powell (1984) yields temperature estimates of 660–850 �C.
A pressure estimate of 5 kbar at 700 �C is yielded by the Al con-
placement of the Pangong metamorphic and magmatic complex
ces (2008), doi:10.1016/j.jseaes.2008.03.009



Fig. 1. Geological sketch map of the Karakorum Fault area in NW India. Insert, location and setting within the SE Asian tectonic context.
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tent of hornblende of up to 2.9 p.f.u (Plyusnina, 1982). Similar
estimates are obtained with Thermocalc for most samples (rang-
ing from 500 ± 20 to 650 ± 40 �C), showing that the samples
were strongly reequilibrated in the amphibolite facies during
shearing.

5.1.3. LT retrogression
Increasingly more calcic compositions of amphibole from core

(paragasite) to rim (actinolite), and garnet–biotite cationic ex-
change thermometry define retrogressive conditions in the lower
amphibolite to upper greenschist facies (600–450 �C at
P = 4 kbar). Finally, the crystallisation of actinolite–chlorite–albite
assemblages in the zones of ductile–brittle reactivation defines
further retrogression in the greenschist facies (Moody et al.,
1983).

5.2. Pangong amphibolitic unit

The Eastern amphibolite facies part of Pangong Range consists
mainly of metapelites, showing the assemblage biotite–plagio-
Please cite this article in press as: Rolland, Y. et al., Syn-kinematic em
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clase–muscovite–sillimanite–garnet–quartz (Assemblage 4).
Muscovite, sillimanite, and biotite define the foliation.

The co-stability of muscovite and sillimanite, in absence of
K-feldspar, defines temperatures between 650 and 730 �C at
7 kbar (Hodges and Spear, 1982; Le Breton and Thompson,
1988; Vielzeuf and Holloway, 1988). P–T estimates based on
cationic exchange thermobarometers yield conditions of
T = 700 ± 20 �C (Fig. 7; Ferry and Spear, 1978; Ganguly and Sax-
ena, 1984; Hodges and Spear, 1982) and P = 7 ± 1 kbar (Ghent
and Stout, 1981; Hodges and Crowley, 1985; Hoisch, 1990;
Plyusnina, 1982).

5.3. Saser Kangri metamorphic rocks

NE to the Nubra valley and Karakorum Fault, the Saser Kangri
metamorphic rocks consist of metapelites bearing the assemblage:
andalusite–cordierite–biotite–albite–quartz ± sillimanite ± garnet.
This assemblage features low pressure amphibolite conditions.
Using the XMg (0.58, Table 2) content of cordierite, in presence of
garnet, the metamorphic peak can be fixed at a pressure of
placement of the Pangong metamorphic and magmatic complex
ces (2008), doi:10.1016/j.jseaes.2008.03.009



Fig. 2. Simplified structural map of the Karakorum Fault (N-Ladakh, India), with microstructural data plots (Wulff canvas plots in lower hemisphere).

6 Y. Rolland et al. / Journal of Asian Earth Sciences xxx (2008) xxx–xxx

ARTICLE IN PRESS
5.5 ± 1 kbar at a temperature of 660 ± 50 �C (Fig. 7), according to
the barometer of Vielzeuf (1984).

6. Age of HT metamorphism

Two samples, from the amphibolitic and granulitic units of the
Pangong Range, have been selected for Ar analysis. The Ar data are
displayed on Table 3 and Fig. 8.

The Ar systematics of sample L441 are simple (c, Fig. 8). The Ca/
K ratio is uniform in steps 2–6, which account for >90% of the Ar
release. Similarly, in these steps the Ca/Cl ratio varies only between
76 and 101. This small chemical variation suggests that there is
essentially only one amphibole generation, and accordingly its step
ages are uniform and average 13.6 ± 0.9 Ma (2r). Both these fea-
tures suggest that the amphibole was completely crystallized dur-
ing the amphibolite facies shearing event.

The Ar spectrum of sample L450 (a, Fig. 8) shows a staircase
shape, with step ages ranging from 18.6 ± 0.8 to 30.6 ± 0.8 Ma. In
steps 3–8, which account for 87% of the Ar release, Ca/K ratios
are very uniform between 32.6 and 33.4, but Ca/Cl ratios vary sig-
nificantly between 1174 and 1425 defining a good correlation with
age. This information suggests that a young, Cl-rich amphibole
overgrew an old, Cl-poor one, but in order to achieve a conclusive
proof it would be necessary to acquire additional electron micro-
probe data. With microchemical and microstructural data, it is pos-
sible to reliably date successive amphibole generations (Villa et al.,
2000). As a further example of the method’s potential, we recall the
distinction between ages of granulitic amphibole cores and
amphibolite-facies rims on the basis of correlated AlIV/AlVI and
Ca/K ratios (Villa et al., 1996) or on the basis of correlated Ca/Cl
and Ca/Al ratios (Kreissig et al., 2001).

For pargasite L450, four electron microprobe analyses along a
core–rim traverse were acquired. They show a uniform increase
Please cite this article in press as: Rolland, Y. et al., Syn-kinematic em
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of the Ca/K ratio between cores (Ca/K = 25.3) and rims (Ca/
K = 34.7). However, the AlIV/AlVI ratios are constant, which requires
that cores and rims were formed at the same P–T conditions, pre-
sumably in a very short time. On the other hand, the Ca/K ratio of
the gas-rich steps is uniform, which may reflect the fact that during
hand-picking the transparent rims were efficiently purified at the
expense of more inclusion-rich cores. Any interpretation of step
ages up to 30 Ma is, therefore, highly speculative and will not be
pursued here. In conclusion, our two amphibole ages appear to
bracket the 18.0 ± 0.6 Ma emplacement of Tangtse granite (U–Pb
on zircon, Searle et al., 1998).

7. Discussion

Several questions remain to be solved, concerning the tectono-
metamorphic evolution of the Karakorum–Tibet boundary. What is
the importance of the Karakorum Fault, including the depth, total
offset and age of initiation of this fault? What is the reason for
the HT metamorphic evolution observed in both the Karakorum
margin and the Karakorum Fault?

7.1. Depth of the Karakorum Fault

The above P–T estimates give some constrains to the P–T path
followed by the granulitic core of the Pangong Range and its east-
ern amphibolitic slice (Fig. 9). The P–T path of the granulitic core is
characterised by a strong decrease in temperature from 18 km
depth (pressure of 6 kbar). The P–T path of the amphibolitic slice
becomes similar to the granulitic unit at �12 km (4 kbar). These
data suggest that an anomalous thermal flux is present at shallow
levels in the fault zone (50 �C km�1 at 10 km depth). Such anoma-
lous thermal gradient has also been observed in current and fossil
major strike-slip faults, such as the Red River fault zone (Leloup
placement of the Pangong metamorphic and magmatic complex
ces (2008), doi:10.1016/j.jseaes.2008.03.009



Fig. 3. Micro-photographs of microstructures and lithologies. (A–C) The Tangtse granite in crossed polars (sample L445, X-Z N140�E horizontal section). The texture is shown
at centimetre (A) to millimetre (C) scales. Dextral sense of shear is deduced from the curvate schistosity (S) and shear planes parallel (C) or oblique at 30–40�(C0) with respect
to the picture N140�E orientation. Also note that the orientation of porphyritic feldspar crystals, as well as biotite is acquired previously to the crystallisation of quartz that
‘‘seals” the syn-magmatic fabric. Strike-slip shearing necessarily occurred before the complete crystallisation of the granite. (D) Granulite-grade sample (L452) showing cpx-
bearing lenses (a) separated by zones of amphibolitized (hornblende bearing) rock (b). (E) Porphyritic amphibolite (sample L441) showing large granular amphibole
(hornblende) crystals. (F) Greenschist facies rock (sample L457), with deformed plagioclase porphyroclasts suggesting a volcanic andesitic basalt protolith; the sense of shear
is clearly dextral as shown by the C–S relationships.
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and Kienast, 1993) in SE Asia, and in the Great Slave shear zone in
Canada (Hoffman, 1987; Hanmer, 1988). These HT gradients have
firstly been interpreted as the result of shear heating (Leloup and
Kienast, 1993; Leloup et al., 1995). However, the estimated gradi-
ent in the Karakorum Fault is higher (DT, Fig. 9) or similar to the
highest estimates modelled for a single shear heating process alone
(30 �C km�1; Leloup et al., 1999; Nabelek et al., 2001). This high
thermal gradient, i.e., raising isotherms, could be due to heat
advection (by magmatic ascent) and conduction along the fault
zone. Mantle-derived magmas (lamprophyres and syenites) are
known in the Karakorum Fault region NE of K2 (Pognante, 1990),
and within the Karakorum metamorphic Complex where they are
dated at 20–22 Ma by whole-rock K–Ar ages (Rex et al., 1988).
Their mantle origin is shown by their mineralogy and geochemis-
try composition (Pognante, 1990; Rex et al., 1988; Mahéo et al.,
2002). Such magmas could thus provide significant heat imput
and confirm that the Karakorum Fault could be a crustal to litho-
sphere-scale shear zone (Fig. 10), as previously proposed for the
Red River Fault (Leloup et al., 1999) and the Altyn Tagh Fault (Witt-
linger et al., 1998).
Please cite this article in press as: Rolland, Y. et al., Syn-kinematic em
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7.2. Exhumation of the Pangong Massif

The Tangtse granite, which has been intruded in the
amphibolitic unit at the contact with the granulitic core unit,
has been dated at 18 Ma (U/Pb on zircon) by Searle et al.
(1999). As metamorphic conditions reached in the amphibolitic
unit were just below the muscovite dehydration melting reaction
(Le Breton and Thompson, 1988; Vielzeuf and Holloway, 1988), a
rather small thermal increase at the contact with the granulitic
unit could have been sufficient to trigger partial melting. If we
accept this interpretation, the 18 Ma age of the Tangtse granite
dates the muscovite dehydration melting reaction in the
amphibolites. The concordant 18 Ma Ar–Ar age component in
granulite sample L450 suggests that the age of 18 Ma could also
correspond to the tectonic stacking of the two units. The Ar–Ar
hornblende crystallization at13.6 ± 0.9 Ma would date further
amphibolite-facies shearing at 600 ± 50 �C. Further cooling down
to 500 �C (e.g., Di Vincenzo et al., 2003) is dated at ca. 11 Ma by
Ar–Ar data of Tangtse granite muscovite obtained by Searle et al.
(1999).
placement of the Pangong metamorphic and magmatic complex
ces (2008), doi:10.1016/j.jseaes.2008.03.009



Fig. 4. (A) Na2O+K2O vs. SiO2 plot of Pangong Massif metamorphic rocks. (B) TiO2 vs. SiO2 plot of Pangong Range rocks. Note that the values obtained for Pangong Range rocks
plot within the field of Ladakh Shyok Suture Zone volcanic rocks [data from Rolland et al. (2000, 2002)].
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These age estimates allow P–T–t path reconstitution for the
Pangong Range (Fig. 10), and derivation of vertical exhumation
rates for the Pangong Massif, albeit still imprecise. Transition
from Tangtse granite emplacement (zircon age, 18 Ma) to
amphibolite-facies shearing (Ar amphibole age, 13.6 ± 0.9 Ma),
Please cite this article in press as: Rolland, Y. et al., Syn-kinematic em
along the Karakorum Fault (N Ladakh) ..., Journal of Asian Earth Scien
for which in Section 5 we provided a temperature window be-
tween ca. 500 and 650 �C and P = 4 kbar, corresponds to a pres-
sure decrease of ca. 1 kbar, or 3 ± 1 km. Thus, the vertical
exhumation rate of the Pangong Range can be estimated to
0.7 ± 0.2 mm a�1. The white mica ages (Searle et al., 1999) pertain
placement of the Pangong metamorphic and magmatic complex
ces (2008), doi:10.1016/j.jseaes.2008.03.009



Fig. 5. Granulite and amphibolite grade assemblages photographs (A, B, D in natural light and C in polarised light). (A) Clinopyroxene grains mantled by hornblende (C-Amph)
and biotite (sample L441); (B) microgranular texture made of clinopyroxene–amphibole (hornblende–pargasite; sample L448)–plagioclase–quartz–spinel; (C) large and
zoned acicular to prismatic orthoamphibole grains (O-Amph), of anthophyllite to gedrite compositions, locally fringed by hornblende (C-Amph; sample L456). Orthoamp-
hibole crystals nucleated around rutile grains, and are included in cm-large poekilitic garnet that constitutes the opaque background of the picture. (D) Amphibolite-grade
metapelite (E-Pangong, sample L446), showing a biotite–garnet–muscovite–quartz–plagioclase–sillimanite assemblage.

Fig. 6. P–T path of metabasites from the Pangong Massif granulitic unit (CaFMASH system). (1) from Goldsmith (1976); (2) from Spear (1981); (3): Albite = Jadeite + Quartz,
after Holland (1980); (4): Garnet (Xalm: 0.4) + Rutile = Ilmenite + Aluminosilicate + Quartz, after Bohlen et al. (1983); (5) Albite + Chlorite + Epidote + Actinolite = Plagio-
clase + Hornblende, after Schiffman and Liou (1980); (6) Chlorite + Epidote + Quartz = Tschermakite + Anorthite + H2O, after Nitsch (1971). Thermocalc P–T estimates are
shown by ellipses (2r error).
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Fig. 7. P–T paths for the metapelites of the different units of the studied area (KFMASH system), XH2O = 1 and quartz in excess. Dotted lines are almandine isopleths. The H2O-
saturated metapelite solidus is after Thompson (1982); Grt + Ms and Grt + Kfs producing reactions are from Vielzeuf (1984) and Vielzeuf and Holloway (1988); Ms to Kfs + Sil
destabilisation from Le Breton and Thompson (1988). XMg = 0.6 isopleth of cordierite after Vielzeuf (1984). Other reactions are from Spear and Cheney (1989). Minerals
abbreviations following Kretz (1983).
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to the cessation of cation exchange, recorded by the garnet–bio-
tite geothermometer, and thus to a similar temperature range
of 600–450 �C (Section 5) and do not add precise constraints.
From 18 Ma, the total vertical offset of the Pangong Range is esti-
mated at 18 ± 1.5 km. Thus, the most robust estimate is the aver-
age exhumation rate between 18 Ma and present is estimated at
1.0 ± 0.2 mm a�1. We note that it is three times lower than in
some areas of the Karakorum Metamorphic Complex of Pakistan
(Dassu Dome: 3 mm a�1, Rolland et al., 2001, 2006a). A horizontal
offset can be estimated from the 18 km exhumation using the 30�
plunge of lineations in the Pangong Range: the horizontal offset is
calculated as 31 ± 3 km. This offset corresponds to the time be-
tween 18 Ma and present.

7.3. Geological offsets of the Karakorum Fault

Searle et al. (1998) have estimated a c. 150 km offset from the
correlation of the Baltoro Batholith with the Tangtse granite. This
correlation appears to be unlikely because (1) the Tangtse granite
has been dated at 18 Ma, diachronous to the Baltoro Batholith,
dated between 25 and 21.5 Ma (Parrish and Tirrul, 1989; Schärer
et al., 1990a). Further, the Baltoro and Tangtse granites are dissim-
ilar considering both emplacement mode and volume. The Baltoro
Batholith has emplaced as a great sill within the Karakorum series,
while Tangtse granite is a complex dyke network emplaced syn-
kinematically within the fault zone during dextral motion. Conse-
quently, the Tangtse granite is not offset by the active Karakorum
fault and therefore cannot be used to estimate the amount of ver-
Please cite this article in press as: Rolland, Y. et al., Syn-kinematic em
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tical offset along this fault. Moreover, as shown by the geochemical
analyses, the Pangong Range amphibolites bear volcanic arc fea-
tures similar to Shyok Suture Zone volcanic rocks and are unlikely
to be correlated to the Karakorum series, which are mostly formed
by interlayered metapelites and marble series (Rolland et al.,
2002b, 2006a). Tangtse granite exhibits zoned zircons, with inher-
ited core U–Pb ages of 106 Ma (Searle et al., 1999), overgrown by
magmatic zircon with ages of 18 Ma. The inherited zircon age of
the Tangse granite is within the range of the paleontological and
radiometric age of Shyok Suture Zone formations (Aptian–Albian;
Rolland et al., 2000, 2006b), which is in agreement with the Shyok
volcanics being a source for the Tangtse Granite. In contrast, the
Baltoro granite zircon shows Precambrian inheritance (Parrish
and Tirrul, 1989), and is therefore unlikely correlated with the
Tangtse Granite. The Karakorum Fault offsets could rather be de-
duced from the correlation of geological terrain accreted to the
Asian margin. Cambro–Ordovician rocks are observed all along
the S–Karakorum margin, (LeFort et al., 1994; Rolland et al.,
2002b). Such Cambro–Ordovician successions of rocks have also
been found in the Lhasa block. There, Xu et al. (1985) have de-
scribed early Cambrian basement gneiss (539 ± 14 Ma), and
unmetamorphosed Ordovician sediments overlie this basement
(Yin et al., 1988). Further, both Lhasa and Karakorum terrains were
accreted in the Upper Jurassic–Lower Cretaceous period (Zanchi
et al., 2000). The correlation of the Karakorum and Lhasa blocks
based on the current positions of the Kilik fault, northern boundary
of Karakorum (Gaetani et al., 1990a,b) and of the Bangong suture
(northern boundary of the Lhasa block) suggests a total offset of
placement of the Pangong metamorphic and magmatic complex
ces (2008), doi:10.1016/j.jseaes.2008.03.009



100806040200

%39Ar

L450

10

20

30

40

50

0.030.020.01
10

20

30

40

50

Cl/K

L450

100806040200
%39Ar

L441

13.6 ±

c
161412108642

0

10

20

30

40

50

60

Ca/K

L441

d

a b

60

50

40

30

20

10

A
ge

A
ge

A
ge

A
ge

0.9 Ma

Fig. 8. 40Ar/39Ar stepwise heating data plots for samples L441 (granulite) and L450 (amphibolite).
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�300 km along the central part of the Karakorum Fault. This esti-
mate is comparable to the estimate made by Lacassin et al.
(2004a,b) based on the correlation of Shyok and Shiquanhe suture
zones (Fig. 11).

7.4. Age of initiation and slip rates of the KF

Metamorphic rocks are clearly syn-kinematic as shown by min-
eral growth in the direction of the mineral/stretching lineation
within the fault zone. Then, the oldest metamorphic age (that of
the temperature peak of the Pangong Range) is a minimum age
for the initiation of slip along the KF. The HT event is microstruc-
turally contiguous to the amphibolite facies retrogression, and
would therefore be predicted to be temporally quite close, because
relaxation of the thermal anomaly of 700 �C at 5–6 kbar would last
less than 1 Ma. For a HT age of 18 Ma, the slip rate is ca. 17 mm a�1.
On the other hand, granulite facies metamorphism could be coeval
Please cite this article in press as: Rolland, Y. et al., Syn-kinematic em
along the Karakorum Fault (N Ladakh) ..., Journal of Asian Earth Scien
with U–Pb age of 32 ± 3 Ma obtained on syn-metamorphic and
syn-kinematic leucogranites on other portions of the KF (Valli
et al., 2003), and on leucogranites of the Pangong Range itself
(Searle et al., 1998). Taking into account this 32 Ma age, and the
estimated 300 km of offset, the mean slip rate of the Karakorum
Fault would be a minimum of ca. 10 mm a�1. Such value is similar
with Quaternary rate estimates based on cosmogenic dating of off-
set moraines (10.7 ± 0.7 mm a�1, Chevalier et al., 2005). The initia-
tion of the Karakorum Fault would then be sub-contemporaneous
to that of the Red River Fault (30–40 Ma, Lacassin et al., 1997). The
metamorphic evolution of the Pangong Range appears to be quite
similar considering P–T evolution to that of the Red River fault.
Similar U–Pb and Ar–Ar ages were obtained in both the Karakorum
and Red River faults (Tapponnier et al., 1990; Harrison et al., 1992;
Leloup et al., 1995; Lacassin et al., 1997; Schärer et al., 1990b,
1994), suggesting that these two faults have acted as comparable
boundaries of the extruding Tibetan bloc during the Miocene
placement of the Pangong metamorphic and magmatic complex
ces (2008), doi:10.1016/j.jseaes.2008.03.009



Fig. 9. Pressure–Temperature–time paths obtained for Pangong granulites and amphibolites. The broken lines represent (from left to right): 1, ‘‘normal” geothermal
conditions prevailing in an unperturbed lithosphere; 2–3, modelled conditions of minimal and maximal heat input by shear heating in a crustal-scale shear zone (Leloup et al.,
1999). Minerals abbreviations following Kretz (1983).

Fig. 10. Schematic 3D interpretative view of the Karakorum Fault structure along Nubra, Shyok and Pangong valleys.
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Fig. 11. Sketch geological map of the Karakorum Fault, showing in particular the offset of the Karakorum Fault if a correlation of Karakorum and Lhassa terrains is done.

Y. Rolland et al. / Journal of Asian Earth Sciences xxx (2008) xxx–xxx 13

ARTICLE IN PRESS
(Burdigalian). In the light of deformation pattern observed in the S-
Karakorum region (Fig. 12; Rolland et al., 2002a; Mahéo et al.,
2004), the lateral extrusion of Tibet could be also accommodated
by ductile flattening (vertical folding) within the Karakorum and
Tibet terrains, due to the rheology of the granulitic grade mid-crus-
tal levels (e.g., Le Pichon et al., 1997; Burg and Podladchikov, 1999).

8. Conclusion

1. The thermal evolution of the Karakorum Fault has been stud-
ied in the Pangong Range area. The thermobarometric estimates
point out HT rocks, equilibrated at T > 800 �C, P = 5.5 kbar. These
rocks successively, and partially, reequilibrated in the amphibolite
facies at 700–750 �C, 4–5 kbar, and in the greenschist facies.

2. Syn-magmatic C–S structures observed within the Tangtse
granite show very clearly that this granite was emplaced syn-kine-
matically within the KF, and not offset by the KF as previously
suggested.

3. Compiled U–Pb zircon, Ar–Ar mica and additional Ar–Ar
amphibole age give further constrains on the P, T, t path of the Pan-
gong Range. Amphibolitisation at 700–750 �C is constrained by the
Tangtse granite emplacement at 18 Ma (U/Pb zircon). A similar age
range is suggested by incomplete Ar–Ar resetting of amphibole
sample L450. Deformation continued to lower temperatures of
ca. 650–500 �C at least until 13.6 ± 0.9 Ma (Ar–Ar amphibole age
Please cite this article in press as: Rolland, Y. et al., Syn-kinematic em
along the Karakorum Fault (N Ladakh) ..., Journal of Asian Earth Scien
of sample L441). Post-deformation greenschist-facies muscovite
grew at 11 Ma.

4. The HT conditions observed in the Pangong Range reveal a
very high thermal gradient within the fault. This gradient lies at
higher temperature conditions than the conditions modelled for
a simple shear heating process within a trans-Lithospheric fault,
suggesting that additional heat advection within the fault is to be
advocated.

5. Correlating the Karakorum and Lhasa terrains, which are
formed by similar Cambro–Ordovician series and accreted sub-
contemporaneously to the Asian margin, we propose a total offset
of 300 km since the collision at the Upper Jurassic–Lower Creta-
ceous transition.

6. Finally, the observed tectonic and metamorphic evolutions at
the Karakorum–Tibet boundary may be the result of crustal-scale
partitioning between strike-slip faulting, along the Karakorum
Fault, and folding within the Karakorum margin (Fig. 12). In this
context, HT metamorphism observed and mantle-derived magma-
tism are interpreted to result from a slab detachment process.
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